Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (sec x)m (tan3 x + tan x) dx is equal to
Q.
∫
(
sec
x
)
m
(
t
a
n
3
x
+
t
an
x
)
d
x
is equal to
2536
190
KEAM
KEAM 2016
Integrals
Report Error
A
se
c
m
+
2
x
+
C
3%
B
se
c
m
−
2
x
+
C
8%
C
m
+
2
se
c
m
+
2
x
+
C
70%
D
m
+
2
t
a
n
m
+
2
x
+
C
14%
E
m
−
1
se
c
m
+
1
x
+
C
14%
Solution:
Let
I
=
∫
(
sec
x
)
m
(
tan
3
x
+
tan
x
)
d
x
=
∫
sec
m
x
tan
x
(
tan
2
x
+
1
)
d
x
=
∫
sec
m
+
1
x
⋅
(
sec
x
tan
x
)
d
x
Put sec
x
=
t
⇒
sec
x
tan
x
d
x
=
d
t
=
∫
t
m
+
1
d
t
=
m
+
2
s
e
c
m
+
2
x
+
C