Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
S=tan-1((1/n2+n+1))+tan-1((1/n2+3n+3))+... tan-1 ((1/1+(n + 19)(n + 20))), then tan S is equal to :
Q.
S
=
t
a
n
−
1
(
n
2
+
n
+
1
1
)
+
t
a
n
−
1
(
n
2
+
3
n
+
3
1
)
+
...
t
a
n
−
1
(
1
+
(
n
+
19
)
(
n
+
20
)
1
)
,
then
t
an
S
is equal to :
3393
154
JEE Main
JEE Main 2013
Inverse Trigonometric Functions
Report Error
A
401
+
20
n
20
9%
B
n
2
+
20
n
+
1
n
31%
C
n
2
+
20
n
+
1
20
46%
D
401
+
20
n
n
14%
Solution:
We know that,
t
a
n
−
1
1
+
2
1
+
t
a
n
−
1
+
1
+
2
×
3
1
+
t
a
n
−
1
1
+
3
×
4
1
+
......
+
t
a
n
−
1
1
+
(
n
−
1
)
n
1
+
t
a
n
−
1
1
+
(
n
(
n
+
1
)
)
1
+
......
+
t
a
n
−
1
1
+
(
n
+
19
)
(
n
+
20
)
1
=
t
a
n
−
1
n
+
21
n
+
19
⇒
t
a
n
−
1
n
+
1
n
−
1
+
t
a
n
−
1
1
+
n
(
n
+
1
)
1
+
t
a
n
−
1
1
+
(
n
+
1
)
(
n
+
2
)
1
+
......
+
1
+
(
l
+
(
n
+
19
)
(
n
+
20
)
)
1
=
t
a
n
−
1
n
+
21
n
+
19
t
a
n
−
1
1
+
n
(
n
+
1
)
1
+
t
a
n
−
1
1
+
(
n
+
1
)
(
n
+
2
)
1
+
......
+
1
+
(
n
+
19
)
(
n
+
20
)
1
=
t
a
n
−
1
n
+
21
n
+
19
−
t
a
n
−
1
n
+
1
n
+
1
t
a
n
−
1
(
n
2
+
n
+
1
1
)
+
t
a
n
−
1
(
n
2
+
3
n
+
3
1
)
+
.....
+
t
a
n
−
1
1
+
(
n
+
19
)
(
n
+
20
)
1
=
t
a
n
−
1
(
1
+
n
+
21
n
+
19
×
n
+
1
n
−
1
n
+
21
n
+
19
−
n
+
1
n
−
1
)
=
t
a
n
−
1
n
2
+
20
n
+
1
20
=
S
∴
t
a
n
−
1
S
=
n
2
+
20
n
+
1
20