Let x2=p, then x4−3x2+23x2+7=p2−3p+23p+7
Let p2−3p+23p+7=p−1A+p−2B ⇒(p−1)(p−2)3p+7=(p−1)(p−2)A(p−2)+B(p−1)
Consider, 3p+7=A(p−2)+B(p−1) Put p=1,−A=10⇒A=−10 p=2,B=13 p2−3p+23p+7=p−213−p−110.
But p=x2 ∴x4−3p2+23x2+7=x2−213−x2−110. =x2−213−5[x−11−x+11] =x2−213+x+15−x−15.