f(x)=sin−1x+tan−1x+sec−1x
Domain of sin−1x=[−1,1]
Domain of tan−1x=(−∞,∞)
Domain of sec−1=(−∞,∞)−(−1,1)
Domain of f(x)=[−1,1]∩(−∞,∞)∩[(−∞,∞)−(−1,1)] ={−1,1}
Now f(−1)=sin−1+tan−1(−1)+sec−1(−1) =−2π−4π+π=4π
and f(1)=sin−1(1)+tan−1(1)+sec−1(1) =2π+4π+0 =43π
Range of f(x)={4π,43π}