PLAN To find the foot of perpendiculars and find its locus.
Formula used
Foot of perpendicular from (x1,y1,z1) to ax+by+cz+d=0be(x2,y2,z2) then ax2−x1=by2−y1=cz2−z1 =a2+b2+c2−(ax1+by1+cz1+d)
Any point on 2x+2=−1y+1=3z=λ ⇒x=2λ−2,y=−λ−1,z=3λ
Let foot of perpendicular from (2λ−2,−λ−1,3λ)
to x+y+z=3 be (x2,y2,z2). ∴1x2−(2λ−2)=1y2−(−λ−1)=1z2−(3λ) =1+1+1(2λ−2−λ−1+3λ−3) ⇒x2−2λ+2=y2+λ+1=z2−3λ=2−34λ ∴x2=32λ,y2=1−37λ,+2=z2=2+35λ ⇒λ=2/3x2−0,=1−−7/3y2−1,=+5/3z2−2
Hence, foot of perpendicular lie on =2/3x=−7/3y−1=5/3z−2⇒2x=−7y−1=5z−2