Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Part of the domain of the function f(x)=√( cos x-1 / 2/6+35 x-6 x2) lying in the interval [-1,6] is
Q. Part of the domain of the function
f
(
x
)
=
6
+
35
x
−
6
x
2
c
o
s
x
−
1/2
lying in the interval
[
−
1
,
6
]
is
120
127
Relations and Functions
Report Error
A
[
−
1/6
,
π
/3
]
∪
[
5
π
/3
,
6
]
0%
B
(
−
1/6
,
π
/3
]
∪
[
5
π
/3
,
6
)
100%
C
(
−
1/6
,
6
)
0%
D
none of these
0%
Solution:
The function
f
is meaningful only if
cos
x
−
1/2
≥
0
,
6
+
35
x
−
6
x
2
>
0
or
cos
x
−
1/2
≤
0
,
6
+
35
x
−
6
x
2
<
0
i.e.,
cos
x
≥
1/2
,
(
6
−
x
)
(
1
+
6
x
)
>
0
or
cos
x
≤
1/2
,
(
6
−
x
)
(
1
+
6
x
)
<
0
.
These inequalities are satisfied if
x
∈
(
−
1/6
,
π
/3
]
∪
[
5
π
/3
,
6
)
.