(a) [3(3+1)]2=3(3+1+23) =12+63
(b) [−3(3−1)]2=3(3+1−23) =12−63
(c) [3(−3+1)]2=3(3+1−23) =12−63
Hence, none of the square values of options are equal to the given value.
Alternative
Let 6+43=x+y ⇒6+43=x+y+2xy ⇒x+y=6,xy=23
Now, (x−y)2=(x+y)2−4xy=36−4(4×3) =−12<0
It is not possible.
Hence, square root is not possible.