f(x)=x100+sinx−1 ⇒f′(x)=100x99+cosx.
If 0<x<π/2, then f′(x)>0,
therefore f(x) is increasing on (0,π/2).
If 0<x<1, then 100x99>0 and cosx>0 [∵x lies between 0 and 1 radian ] ⇒f′(x)=100x99+cosx>0 ⇒f(x) is increasing on (0,1)
If π/2<x<π, then 100x99>>100 [∵x>1,∴x99;>1] ⇒100x99+cosx>0 [∵cosx≥−1,∴100x99+cosx>99] ⇒f′(x)>0 ⇒f(x) is increasing on (π/2,π)