Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
On using elementary row operation R1 arrow R1 -3R2 in the following matrix equation: [4&2 3&3]=[1&2 0&3][2&0 1&1], we have
Q. On using elementary row operation
R
1
→
R
1
−
3
R
2
in the following matrix equation:
[
4
3
2
3
]
=
[
1
0
2
3
]
[
2
1
0
1
]
,
we have
1812
225
Matrices
Report Error
A
[
−
5
3
−
7
3
]
=
[
1
0
−
7
3
]
[
2
1
0
1
]
36%
B
[
−
5
3
−
7
3
]
=
[
1
0
2
3
]
[
−
1
1
−
3
1
]
29%
C
[
−
5
3
−
7
3
]
=
[
1
1
2
−
7
]
[
2
1
0
1
]
18%
D
[
4
−
5
2
−
7
]
=
[
1
−
3
2
−
3
]
[
2
1
0
1
]
17%
Solution:
[
4
3
2
3
]
=
[
1
0
2
3
]
[
2
1
0
1
]
Applying
R
1
→
R
1
−
3
R
2
, we get
[
−
5
3
−
7
3
]
=
[
1
0
−
7
3
]
[
2
1
0
1
]