Any line through the intersection of 2x−3y+4=0
and 3x+4y−5=0 can be taken as 2x−3y+4+k(3x+4y−5)=0
or x(2+3k)+y(4k−3)+4−5k=0…(i)
This line is parallel to y-axis if 4k−3=0 i.e., if k=43.
Substituting k=43 in (i), we get x(2+49)+y(3−3)+4−415=0,
i.e., 17x+1=0