Q.
Number of values of θ in [0,2π] for which the expression y=tan(x−θ)tanxtan(x+θ)tan(x−θ)+tanx+tan(x+θ) is independent of x.
196
92
Complex Numbers and Quadratic Equations
Report Error
Answer: 4
Solution:
(You may use the fact that, the ratio p2+qx+ra2+bx+c is independent of x if pa=qb=rc ) y=sin(x−θ)sinxsin(x+θ)sin(x−θ)cosxcos(x+θ)+sinxcos(x−θ)cos(x+θ)+sin(x+θ)cosxcos(x−θ)
For simplifying numerator consider sin3x=sin((x−θ+x+θ)+x)=sin((x−θ)+(x+θ))cosx+cos((x−θ)+(x+θ))sinx sin3x=sin(x−θ)cos(x+θ)cosx+sin(x+θ)cos(x−θ)cosx+cos(x−θ)cos(x+θ)sinx ∴ Numerator =sin3x+sin(x−θ)sinxsin(x+θ) −sin(x−θ)sin(x+θ)sinx ∴y=sin(x−θ)sinxsin(x+θ)sin3x+1 y=sin(x−θ)sin(x+θ)3−4sin2x+1 y=sin2x−sin2θ−4(sin2x−43)+1 ∴sinθ=±23 θ=3π,32π,34π,35π ∴ If y is independent of x then sin2θ=43 ∴sinθ=±23
Hence there are 4 values of θ in [0,2π]