∵y=31[sinx+[sinx+[sinx]]] y=31([sinx]+[sinx]+[sinx]) y=[sinx] and [y+[y]]=2cosx ⇒2[y]=(2cosx) ⇒[y]=cosx
Case I: when −1≤sinx<0 ⇒∴[sinx]=−1
Then, y=−1
i.e. [−1]=cosx ⇒cosx=−1 ⇒sinx=a (impossible)
Case II: when 0≤sinx<1 ∴[sinx]=0
Then, y=0
i.e. 0=cosx ⇒sinx=1 (impossible)
Case III: sinx=1 ∴y=1
i.e. cosx=1 ⇒sinx=0 (impossible)
Hence, no solution i.e. number of solutions is zero.