Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Number of solutions of the equation, z3 + (3|z|2/z) = 0, where z is a complex number and |z| = √3 is
Q. Number of solutions of the equation,
z
3
+
z
3
∣
z
∣
2
=
0
, where z is a complex number and
∣
z
∣
=
3
is
3464
197
Complex Numbers and Quadratic Equations
Report Error
A
2
15%
B
3
41%
C
6
32%
D
4
12%
Solution:
z
3
+
z
3
∣
z
∣
2
=
0
⇒
z
3
+
z
3
z
.
z
ˉ
=
0
⇒
z
3
+
3
z
ˉ
=
0
Let
z
=
r
e
i
θ
⇒
r
3
e
i
3
θ
+
3
r
e
−
i
θ
=
0
⇒
e
i
4
θ
=
−
1
[
∵
r
=
3
]
⇒
cos
4
θ
+
i
s
in
4
θ
=
−
1
⇒
cos
4
θ
=
−
1
…
(
i
)
Now
0
≤
θ
<
2
π
⇒
0
≤
4
θ
<
8
π
∴
θ
=
π
,
3
π
,
5
π
,
7
π