tanx+secx=2cosx ⇒cosxsinx+cosx1=2cosx ⇒sinx+1=2cos2x=2(1−sin2x) =2−2sin2x ⇒2sin2x+sinx−1=0 ⇒2sin2x+2sinx−sinx−1=0 ⇒2sinx(sinx+2)−1(sinx+1)=0 ⇒(sinx+2)(2sinx−1)=0 ⇒sinx=−2 which is not possible.
or sinx=21 ⇒x=6π,65π x∈[0,π] ∴ The number of solution =2