Q.
Number of solutions of the equation sin3xcosx+sin2xcos2x+sinxcos3x=1 in the interval [0,2π] is
156
116
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have sin3xcosx+sin2xcos2x+sinxcos3x=1⇒sinxcosx(sin2x+sinxcosx+cos2x)=1 ⇒2sin2x(1+21sin2x)=1⇒sin2x(2+sin2x)=4⇒sin22x+2sin2x−4=0 ∴sin2x=2−2±4+16=−1±5 (Not possible)
As, −1≤sin2x≤1∀x∈R
Hence, number of solutions equals 0 .