Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Number of solutions of the equation 3 x+ x =4[x] will be (where [] represent greatest integer and fractional part respectively)
Q. Number of solutions of the equation
3
x
+
{
x
}
=
4
[
x
]
will be (where [] \& \{ \} represent greatest integer and fractional part respectively)
930
130
Relations and Functions - Part 2
Report Error
A
0
B
2
C
4
D
∞
Solution:
Θ3
[
x
]
+
3
{
x
}
+
{
x
}
=
4
[
x
]
⇒
[
x
]
=
4
{
x
}
Θ0
≤
{
x
}
<
1
⇒
0
≤
[
x
]
<
4
⇒
[
x
]
=
0
,
1
,
2
,
3
⇒
{
x
}
=
0
,
4
1
,
4
2
,
4
3
⇒
x
=
0
,
4
5
,
4
10
,
4
15
∴
Number of solutions
=
4