Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Number of solutions of the equation (2 operatornamecosec x-1+( operatornamecosec x-1=1 in (-k π, k π) is 16 , then possible value of ' k ' is
Q. Number of solutions of the equation
(
2
cosec
x
−
1
+
(
cosec
x
−
1
=
1
in
(
−
kπ
,
kπ
)
is 16 , then possible value of '
k
' is
114
181
NTA Abhyas
NTA Abhyas 2022
Report Error
A
ϕ
B
4
C
8
D
16
Solution:
(
2
cosec
x
−
1
+
(
cosec
x
−
1
=
1
cube both sides
(
3
cosec
x
−
2
)
+
3
(
2
cosec
x
−
1
(
cosec
x
−
1
=
1
(
2
cosec
x
−
1
(
cosec
x
−
1
=
(
1
−
cosec
x
)
(
2
cosec
x
−
1
=
−
(
cosec
x
−
1
⇒
cosec
x
=
0
(neglect)
or
cosec
x
=
1
⇒
sin
x
=
1
,
x
=
2
nπ
+
2
π
⇒
1
solution in
(
0
,
2
π
)
⇒
k
solutions in
(
−
kπ
,
kπ
)
⇒
k
=
16