Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Number of real roots of the equation |1 x x x 1 x x x 1|+|1-x 1 1 1 1-x 1 1 1 1-x|=0 is
Q. Number of real roots of the equation
∣
∣
1
x
x
x
1
x
x
x
1
∣
∣
+
∣
∣
1
−
x
1
1
1
1
−
x
1
1
1
1
−
x
∣
∣
=
0
is
158
170
Determinants
Report Error
Answer:
1
Solution:
R
1
→
R
1
+
R
2
+
R
3
∣
∣
2
x
+
1
x
x
2
x
+
1
1
x
2
x
+
1
x
1
∣
∣
+
∣
∣
3
−
x
1
1
3
−
x
1
−
x
1
3
−
x
1
1
−
x
∣
∣
=
0
(
2
x
+
1
)
∣
∣
1
x
x
1
1
x
1
x
1
∣
∣
+
(
3
−
x
)
∣
∣
1
1
1
1
1
−
x
1
1
1
1
−
x
∣
∣
=
0
C
2
→
C
2
−
C
1
and
C
3
→
C
3
−
C
1
(
2
x
+
1
)
∣
∣
1
x
x
0
1
−
x
0
0
0
1
−
x
∣
∣
+
(
3
−
x
)
∣
∣
1
1
1
0
−
x
0
0
0
−
x
∣
∣
=
0