We have f(x)=(34a−7)x3+(a−3)x2+x+5 ⇒f′(x)=(4a−7)x2+2(a−3)x+1
Now, for f(x) to be monotonic, f′(x)≥0∀x∈R
or f′(x)≤0∀x∈R. ⇒D≤0⇒(a−3)2−(4a−7)≤0 ⇒a2−10a+16≤0 ⇒(a−2)(a−8)≤0⇒a∈[2,8]
Also, 4a−7=0⇒a=47
So, a∈[2,8]−{47}.
Hence, number of integral values of a equals 7.