logx6−5x4x+5<−1
We must have 6−5x4x+5<0 ⇒5x−64x+5<0 ⇒x∈(4−5,56)
Also x>0 and x=1 ∴x∈(0,56)−{1}...(i)
Case I:0<x<1...(ii) logx(6−5x4x+5)<−1 ⇒6−5x4x+5>x1 ⇒6−5x4x+5−x1>0 ⇒x(6−5x)4x2+5x+5x−6>0 ⇒x(5x−6)4x2+10x−6<0 ⇒x(5x−6)2(x+3)(2x−1)<0 ⇒x∈(−3,0)∪(21,56)...(iii)
From (i), (ii) and (iii), we get ∴x∈(21,1) Case II :x>1...(iv) logx(6−5x4x+5)<−1 ⇒6−5x4x+5<x1 ⇒x∈(−∞,−3)∪(0,21)∪(56,∞)...(v)
From (i), (iv) and (v), we get x∈ϕ
Thus, x∈(21,1)