Q.
Number of complex numbers z such that ∣z∣=1 and ∣∣zˉz+zzˉ∣∣=1 is
387
162
Complex Numbers and Quadratic Equations
Report Error
Answer: 8
Solution:
Let z=cosx+isinx,x∈[0,2π). Then 1=∣∣zˉz+zzˉ∣∣=∣z∣2∣z2+zˉ2∣ =∣cos2x+isin2x+cos2x−isin2x∣=2∣cos2x∣
Hence cos2x=1/2 or cos2x=−1/2
If cos2x=1/2, then x1=6π,x2=65π,x3=67π,x4=611π
If cos2x=−21, then
Alternatively: ∣z∣=1⇒z=zˉ1
hence ∣∣zˉz+zzˉ∣∣=1;z=eiθ ∣∣ei2θ+e−i2θ∣∣=1 ∣2cos2θ∣=1 cos2θ=21 or −21 x5=3π,x6=32π,x7=34π,x8=35π
Hence there are eight solutions zk=cosxk+isinxk,k=1,2,…,8