Let length of adjacent sides of rectangle is xcm and ycm so perimeter of rectangle is p=2(x+y)cm and the area A=xycm2 ⇒A=x(2p−x)
for maxima dxdA=0⇒2p−2x=0 ⇒x=4pcm
and y=4pcm ∴ For given perimeter of rectangle p, the maximum possible area A=4p×4p=16p2cm2