A. Let sin−1x=θ⇒x=sinθ, then sin−1(3x−4x3)=sin−1[3sinθ−4sin3θ] =sin−1[sin3θ]=3θ (∵sin3θ=3sinθ−4sin3θ) =3sin−1x
B. tan−1(112)+tan−1(247)=tan−1(1−112⋅247112+247) [∵tan−1x+tan−1y=tan−1(1−xyx+y)] =tan−1(1−2641426448+77)=tan−1(264264−14264125)=tan−1264250264125 =tan−1(264125×250264) =tan−1(21)
C. Let x=cosθ⇒θ=cos−1x, then cos−1(4x3−3x)=cos−1[4cos3θ−3cosθ] =cos−1[cos3θ]=3θ =3cos−1x(∵cos3θ=4cos3θ−3cosθ)
D. 2tan−1(21)+tan−1(71)=tan−1(1−(21)22×21)+tan−1(71) [∵2tan−1x=tan−1(1−x22x)] =tan−11−411+tan−171=tan−1(34)+tan−1(71) =tan−1(1−34×7134+71) [∵tan−1x+tan−1y=tan−1(1−xyx+y)] =tan−1(1−2142128+3)=tan−1(21172131) =tan−1(2131×1721)=tan−1(1731)