A. The given differential equation is dy/dx+2y=sinx. comparing with the form dy/dx+Py−Q, we get P=2 and Q=sinx ∴IF=e∫Pdx⇒e2∫1dx⇒F=e2x
Hence, the solution is given by y⋅F=∫(Q×F)dx+C ⇒y×e2x=∫sinx⋅e2xdx+C....(i)
Let I=∫sinxe2x ∴I=sinx∫e2xdx−∫[dxdsinx∫e2xdx]dx
(integrating by parts) ⇒I=sinx2e2x−21∫cosxe2xdx ⇒I=sinx2e2x−21cosx2e2x ⇒+21∫[dxdcosx∫e2xdx]dx ⇒I=sinx2e2x−41cosxe2x+41∫(−sinx)e2xdx ⇒I=sinx2e2x−41cosxe2x−41I ⇒45I=4e2x(2sinx−cosx) ⇒I=5e2x(2sinx−cosx)
Therefore, Eq. (i) becomes y×e2x=5e2x(2sinx−cosx+C) ⇒y=51(2sinx−cosx)+e−2xC
B. The given differential equation is dxdy+3y=e−2x. On comparing with the form dxdy+Py=Q, we get P=3 and Q=e−2x ∴IF=e∫Pdx⇒e∫3dx⇒F=e3x
The solution of the given differential equation is given by y⋅IF=∫(Q×I)dx+C ⇒y×e3x=∫e−2x⋅e3xdx+C ⇒ye3x=∫exdx+C ⇒ye3x=ex+C ⇒y=e−2x+Ce−3x
C. The given differential equation is dxdy+xy=x2.
On comparing with the form dxdy+Py−Q, we get P−x1 and Q=x2. ∴F=e∫Pdx=ex1dx ⇒F=elog∣x∣=x(∵elogx=x)
The solution of the given differential equation is given by ⇒y⋅IF=∫(Q×IF)dx+C ⇒yx=∫x3dx+C ⇒yx=4x4+C
D. The given differential equation is dxdy+ysecx=tanx. On comparing with the form dxdy+Py=Q, we get P=secx and Q=tanx ∴∣F=e∫Pdx=e∫secxdx ⇒IF=elog∣secx+tanx∣=secx+tanx....(i)
The general solution of the given differential equation is given by y⋅F=∫(Qx∣F)dx+C ⇒y(secx+tanx)=∫tanx(secx+tanx)dx+C ⇒y(secx+tanx)=∫tanxsecxdx+∫tan2xdx+C ⇒y(secx+tanx)=secx+∫sec2xdx−∫1dx+C (∵tan2x=sec2x−1) ⇒y(secx+tanx)=secx+tanx−x+C
E. Given, cos2xdxdy+y=tanx
On dividing by cos2x both sides, we get dxdy+ysec2x=tanxsec2x
On comparing with the form dxdy+Py=Q, we get P=sec2x and Q=tanxsec2x ∴IF=e∫Pdx=e∫sec2xdx⇒IF=etanx
The general solution of the given differential equation is given by y⋅IF=∫(Q×IF)dx+C ⇒yetanx=∫etanx⋅tanxsec2xdx
Put tanx=t⇒sec2x=dxdt⇒dx=sec2xdt ∴yetanx=∫et⋅tsec2×sec2xdt ⇒yetanx=∫et⋅tdt ⇒yetanx=et⋅t−∫[dtd(t)⋅∫etdt]dt ⇒yetanx=et⋅t−∫etdt ⇒yetanx=ett−et+C ⇒yetanx=(tanx−1)etanx+C ⇒y=tanx−1+Ce−tanx
F. Given, xdxdy+2y=x2logx
On dividing by x both sides, we get dxdy+2xy=xlogx
On comparing with the form dxdy+Py=Q, we get P−x2 and Q−xlogx ∴∣F=e∫Pdx=e2∫x1dx ⇒∣F=e2log∣x∣=x2
T he general solution of the given difterential equation is given by y⋅F=∫(Q×∣F)dx+C ⇒x2y=∫x2⋅xlogxdx+C ⇒x2y=∫Ix3IIlogxdx+C ⇒x2y=logx⋅∫x3−∫[dxdlogx∫x3dx]dx+C ⇒x2y=logx⋅4x4−∫[dxdlogx∫x3dx]dx+C ⇒x2y=logx⋅4x4−∫[x1×4x4]dx+C ⇒x2y=logx⋅4x4−∫4x3dx+C ⇒x2y=4x4logx−16x4+C ⇒y=16x2(4logx−1)+Cx−2