Q.
log2x+3(6x2+23x+21)=4−log3x+7(4x2+12x+9), then x equals
1195
189
Complex Numbers and Quadratic Equations
Report Error
Solution:
If logax=t then x=at such that a>0 and a=1
Now, log2x+3(2x+3)(3x+7) =4−log3x+7(2x+3)2…(A)
Now, 2x+3>0 and 2x+3=1 3x+7>0 and 3x+7=1 ∴1+log2x+3(3x+7)=4−log3x+7(2x+3)2 ∵loga(ab)=1+logab ⇒log2x+3(3x+7)+2log3x+7(2x+3)−3=0
Substitute t=log2x+3(3x+7) ⇒t+t2−3=0 ⇒t2−3t+2=0 ⇒t=1,t=2 ⇒ Either 2x+3=3x+7 or (2x+3)2=3x+7 ⇒x=−4 or 4x2+9x+2=0
or x=−2,−41 ⇒x=−4,−2,−41
From these three values, only x=−1/4 satisfies the equation (A).