log2(9−2x)=10log10(3−x) ⇒log2(9−2x)=(3−x) [∵alogab=b] ⇒23−x=9−2x ⇒2x23=9−2x ⇒8=2x×(9−2x) ⇒22x−2x×9+8=0
Let 2x=y, then; y2−9y+8=0 ⇒(y−8)(y−1)=0 ⇒y=8 or y=1 ⇒2x=23 or 2x=20 ⇒x=3 or x=0.
But x=3 does not satisfy the given equation, since log0 is not defined.