Let P(acosθ,bsinθ),Q(acosθ,−bsinθ)
Given, PR:RQ=1:2
Let a point R(h,k) divides the line joining the points P and Q internally in the ratio 1:2. ∴h=acosθ ⇒cosθ=ah ... (i)
and k=3bsinθ ⇒sinθ=b3k ... (ii)
On squaring and adding Eqs. (i) and (ii), we get a2h2+b29k2=1
Hence, locus of R is a2x2+b29y2=1