Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Locus of the centroid of a triangle whose vertices are (1,0),(a cos t, a sin t),(b sin t,-b cos t) is 9 x2+9 y2-6 x=k. Then the value of k=
Q. Locus of the centroid of a triangle whose vertices are
(
1
,
0
)
,
(
a
cos
t
,
a
sin
t
)
,
(
b
sin
t
,
−
b
cos
t
)
is
9
x
2
+
9
y
2
−
6
x
=
k
. Then the value of
k
=
2084
224
AP EAMCET
AP EAMCET 2020
Report Error
A
a
2
+
b
2
B
a
2
+
b
2
−
1
C
a
2
+
b
2
+
1
D
0
Solution:
Centroid is given by
x
=
3
x
1
+
x
2
+
x
3
and
y
=
3
y
1
+
y
2
+
y
3
So,
x
=
3
1
+
a
c
o
s
t
+
b
s
i
n
t
and
y
=
3
0
+
a
s
i
n
t
+
(
−
b
c
o
s
t
)
⇒
(
3
x
−
1
)
=
a
cos
t
+
b
sin
t
…
(i)
and
3
y
=
a
sin
t
−
b
cos
t
…
(2)
Squaring and adding Eqs. (i) and (ii), we get
9
x
2
−
6
x
+
1
+
9
y
2
=
a
2
+
b
2
⇒
9
x
2
+
9
y
2
−
6
x
=
a
2
+
b
2
−
1
∴
k
=
a
2
+
b
2
−
1