Given that, x→∞lim[x2+ax+b−x] =x→∞lim(x2+ax+b−x)×(x2+ax+b+xx2+ax+b+x)
[By rationalisation] =x→∞limx2+ax+b+xx2+ax+b−x2=x→∞limx2+ax+b+xax+b =x→∞limx(1+xa+x2b+1)x(a+xb)
(taking x common from both numerator and denominator) =(1+1)a=2a
It is clear that it depends only on a