Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
lim x arrow 3([x-3]+[3-x]-x), where [⋅] denotes the greatest integer function, is equal to
Q.
lim
x
→
3
([
x
−
3
]
+
[
3
−
x
]
−
x
)
, where
[
⋅
]
denotes the greatest integer function, is equal to
288
168
Limits and Derivatives
Report Error
A
4
B
-4
C
0
D
does not exist
Solution:
x
→
3
lim
([
x
−
3
]
+
[
3
−
x
]
−
x
)
=
x
→
3
lim
([
x
]
−
3
+
3
+
[
−
x
]
−
x
)
=
x
→
3
lim
([
x
]
+
[
−
x
]
−
x
)
=
−
1
−
3
=
−
4
(
∵
[
x
]
+
[
−
x
]
=
−
1
, when
x
∈
/
I
)