limx→37x+4−5x+105x+1−7x−5=00
That is, indeterminate form.
Multiply both the numerator and the denominator with (5x+1+7x−5)(7x+4+5x+10) ⇒limx→3(7x+4−5x−10)(5x+1+7x−5)[5x+1−(7x−5)](7x+4+5x+10) ⇒limx→3(2x−6)(5x+1+7x−5)(−2x+6)(7x+4+5x+10) =limx→3(5x+1+7x−5)−(7x+4+5x+10) =(16+16)−(25+25)=8−10=4−5.