Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim x arrow 1((∫ limits0(x-1)2 t cos (t2) d t/(x-1) sin (x-1)))
Q.
x
→
1
lim
⎝
⎛
(
x
−
1
)
sin
(
x
−
1
)
0
∫
(
x
−
1
)
2
t
cos
(
t
2
)
d
t
⎠
⎞
2600
217
JEE Main
JEE Main 2020
Integrals
Report Error
A
does not exist
0%
B
is equal to
2
1
0%
C
is equal to 1
0%
D
None of the above
100%
Solution:
x
→
1
lim
(
x
−
1
)
sin
(
x
−
1
)
0
∫
(
x
−
1
)
2
t
cos
(
t
2
)
d
t
(
0
0
)
Apply L Hopital Rule
=
x
→
1
lim
(
x
−
1
)
⋅
cos
(
x
−
1
)
+
sin
(
x
−
1
)
2
(
x
−
1
)
⋅
(
x
−
1
)
2
cos
(
x
−
1
)
4
−
0
(
0
0
)
=
x
→
1
lim
(
x
−
1
)
[
cos
(
x
−
1
)
+
(
x
−
1
)
s
i
n
(
x
−
1
)
]
2
(
x
−
1
)
3
⋅
cos
(
x
−
1
)
4
=
x
→
1
lim
cos
(
x
−
1
)
+
(
x
−
1
)
s
i
n
(
x
−
1
)
]
2
(
x
−
1
)
2
cos
(
x
−
1
)
4
=
x
→
1
lim
cos
(
x
−
1
)
+
(
x
−
1
)
s
i
n
(
x
−
1
)
2
(
x
−
1
)
2
cos
(
x
−
1
)
4
on taking limit
=
1
+
1
0
=
0