Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
lim n → ∞ (1/n) displaystyle ∑r = 1 2n (r/ √ n2 + r2) equals
Q.
l
i
m
n
→
∞
n
1
r
=
1
∑
2
n
n
2
+
r
2
r
equals
4403
224
IIT JEE
IIT JEE 1999
Report Error
A
1 +
5
18%
B
1 -
5
18%
C
- 1 +
2
18%
D
1 +
2
45%
Solution:
Let I =
l
i
m
n
→
∞
n
1
r
=
1
∑
2
n
n
2
+
r
2
r
=
l
i
m
n
→
∞
n
1
r
=
1
∑
2
n
n
1
+
(
r
/
n
)
2
r
=
l
i
m
n
→
∞
n
1
r
=
1
∑
2
n
1
+
(
r
/
n
)
2
r
/
n
=
0
∫
2
1
+
x
2
x
d
x
=
[
1
+
x
2
]
0
2
=
5
−
1