Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
lim limitsn arrow ∞((n2/(n2+1)(n+1))+(n2/(n2+4)(n+2))+(n2/(n2+9)(n+3))+ ldots+(n2/(n2+n2)(n+n))) is equal to
Q.
n
→
∞
lim
(
(
n
2
+
1
)
(
n
+
1
)
n
2
+
(
n
2
+
4
)
(
n
+
2
)
n
2
+
(
n
2
+
9
)
(
n
+
3
)
n
2
+
…
+
(
n
2
+
n
2
)
(
n
+
n
)
n
2
)
is equal to
1491
145
JEE Main
JEE Main 2022
Integrals
Report Error
A
8
π
+
4
1
lo
g
e
2
40%
B
4
π
+
8
1
lo
g
e
2
31%
C
4
π
−
8
1
lo
g
e
2
14%
D
8
π
+
lo
g
e
2
14%
Solution:
n
→
∞
lim
(
r
=
1
∑
n
(
n
2
+
r
2
)
(
n
+
r
)
n
2
)
=
n
→
∞
lim
⎝
⎛
r
=
1
∑
n
n
(
1
+
(
n
r
)
2
)
(
1
+
(
n
r
)
)
1
⎦
⎤
=
0
∫
1
(
1
+
x
2
)
(
1
+
x
)
d
x
=
2
1
0
∫
1
1
+
x
2
1
−
x
d
x
+
2
1
0
∫
1
1
+
x
1
d
x
=
2
1
∫
(
1
+
x
2
1
−
1
+
x
2
x
)
d
x
+
2
1
(
ln
(
1
+
x
)
)
0
1
=
2
1
[
tan
−
1
x
−
2
1
ℓ
n
(
1
+
x
2
)
]
0
1
+
2
1
ℓ
n
2
=
2
1
[
4
π
−
2
1
ℓ
n
2
]
+
2
1
ℓ
n
2
=
8
π
+
4
1
ℓ
n
2