Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
lim h → 0 ( f (2 h + 2 + h2 ) - f (2)/ f ( h - h2 + 1) - f (1)) , given thta f ' (2) = 6 and f ' (1) = 4.
Q.
l
i
m
h
→
0
f
(
h
−
h
2
+
1
)
−
f
(
1
)
f
(
2
h
+
2
+
h
2
)
−
f
(
2
)
, given thta f ' (2) = 6 and f ' (1) = 4.
1916
242
IIT JEE
IIT JEE 2003
Report Error
A
does not exist
B
is equal to -3/2
C
is equal to 3/2
D
is equal to 3
Solution:
Here,
l
i
m
h
→
0
f
(
h
−
h
2
+
1
)
−
f
(
1
)
f
(
2
h
+
2
+
h
2
)
−
f
(
2
)
[
∵
f ' (2) = 6 and f ' (1) = 4, given ] Applying L'Hospital's rule, =
l
i
m
h
→
0
{
f
′
(
h
−
h
2
+
1
)}
.
(
1
−
2
h
)
−
0
{
f
′
(
2
h
+
2
+
h
2
)}
.
(
2
+
2
h
)
−
0
=
f
′
(
1
)
.1
f
′
(
2
)
.2
=
4.1
6.2
=
3
[using f ' (2) = 6 and f ' (1) = 4]