Given x+∣y∣=2y ⇒x+y=2y or x−y=2y ⇒x=y or x=3y
This represent a straight line which passes through origin.
Hence, x+∣y∣=2y is continuous at x=0.
Now, we check differentiability at x=0 x+∣y∣=2y⇒x+y=2y,y≥0 x−y=2y9y<0
Thus, f(x)={x,3x,y<0y≥0}
Now, L.H.D.=h→0−lim−hf(x+h−)fx() =h→0−lim−hx+h−x=−1 R.H.D=h→0+lim−hf(x+h−)fx() h→0+limh3x+h−3x=h→0+lim31=31
Since, L.H.D=R.H.D. at x=0 ∴ given function is not differentiable at x=0