Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
LetS= x ∈[-6,3]- -2,2: (|x+3|-1/|x|-2) ≥ 0 and T= x ∈ Z: x2-7|x|+9 ≤ 0 . Then the number of elements in S ∩ T is
Q. Let
S
=
{
x
∈
[
−
6
,
3
]
−
{
−
2
,
2
}
:
∣
x
∣
−
2
∣
x
+
3∣
−
1
≥
0
}
and
T
=
{
x
∈
Z
:
x
2
−
7∣
x
∣
+
9
≤
0
}
. Then the number of elements in
S
∩
T
is
729
1
JEE Main
JEE Main 2022
Sets
Report Error
A
7
B
5
C
4
D
3
Solution:
S
∩
T
=
{
−
5
,
−
4
,
3
}