Q.
Let z=x+iy be a complex number where x,y are integers then the area of the rectangle whose vertices are roots of the equation zzˉ3+zˉz3=1088, is
1787
215
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, zzˉ3+zˉz3=1088 ⇒zzˉ2(z2+zˉ2)=1088 ⇒zzˉ{(z+zˉ)2−2zzˉ}=1088 ⇒(x2+y2)[(2Re(z))2−2(x2+y2)]=1088 ⇒(x2+y2)(4x2−2x2−2y2)=1088 (∵z+zˉ=2Rez=2x) ⇒(x2+y2)(x2−y2)=544=34×16
or (32×17 which is impossible) ⇒x2+y2=34 and x2−y2=16 ⇒(x,y)=(±5,±3)=(5,−3),(−5,3),(−5,−3) & (5,−3) ∴ Required area (area of rectangle) =4(x×y)=4×5×3=60 units