Q.
Let z=x+iy be a complex number where x and y are integers. Then, the area of the rectangle whose vertices are the roots of the equation zˉz3+zzˉ3=350 is
3576
233
AMUAMU 2014Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, z=x+iy
Now, zˉz3+zzˉ3=350 ⇒(zˉz)z2+(zzˉ)zˉ2=350 ⇒∣z∣2(x+iy)2+∣z∣2(x+iy)2=350 ⇒(x2+y2) [x2−y2+2ixy+x2−y2−2ixy]=350 ⇒2(x2+y2)(x2−y2)=350 ⇒x4−y4=175 ⇒x=±4, y=±3 ∴ Vertices are (−4,−3),(−4,3),(4,−3) and (4,3) ∴ Length and breadth are 8 and 6 ∴ Area of the rectangle =8×6=48