Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z = x + iy .be a complex number such that arg ((z-1/z+1))=(π/2)⋅ Then x2+y2=
Q. Let
z
=
x
+
i
y
.be a complex number such that arg
(
z
+
1
z
−
1
)
=
2
π
⋅
Then
x
2
+
y
2
=
2869
201
J & K CET
J & K CET 2016
Complex Numbers and Quadratic Equations
Report Error
A
2
14%
B
3
1
0%
C
1
86%
D
3
2
0%
Solution:
Given,
z
=
x
+
i
y
and
arg
(
z
+
1
z
−
1
)
=
2
π
...
(
i
)
∴
z
+
1
z
−
1
=
x
+
i
y
+
1
x
+
i
y
−
1
×
(
x
+
1
)
−
i
y
(
x
+
1
)
−
i
y
=
(
x
+
1
)
2
+
y
2
(
x
2
−
1
)
+
y
2
+
i
2
y
Now,
a
r
g
(
z
+
1
z
−
1
)
=
a
r
g
(
(
x
+
1
)
2
+
y
2
(
x
2
+
y
2
−
1
)
+
i
(
(
x
+
1
)
2
+
y
2
2
y
)
)
⇒
2
π
=
t
a
n
−
1
(
x
2
+
y
2
−
1
2
y
)
⇒
t
an
2
π
=
x
2
+
y
2
−
1
2
y
[Using
(
i
)
]
⇒
0
1
=
x
2
+
y
2
−
1
2
y
⇒
x
2
+
y
2
=
1