Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z ≠ 1 be a complex number and let ω = x+iy, y ≠ 0. If (ω- barωz/1-z) is purely real, then |z| is equal to
Q. Let
z
=
1
be a complex number and let
ω
=
x
+
i
y
,
y
=
0
. If
1
−
z
ω
−
ω
ˉ
z
is purely real, then
∣
z
∣
is equal to
1892
198
KEAM
KEAM 2012
Complex Numbers and Quadratic Equations
Report Error
A
∣
ω
∣
17%
B
∣
ω
∣
2
0%
C
∣
ω
∣
2
1
17%
D
∣
ω
∣
1
0%
E
1
0%
Solution:
Since,
1
−
z
ω
−
ω
ˉ
z
is purely real.
∴
(
1
−
z
ω
−
ω
ˉ
z
)
=
(
1
−
z
ω
−
ω
ˉ
z
)
⇒
1
−
z
ω
−
ω
ˉ
z
=
1
−
z
ˉ
ω
ˉ
−
ω
z
ˉ
⇒
ω
−
ω
z
ˉ
−
ω
ˉ
z
+
ω
z
z
ˉ
=
ω
ˉ
−
ω
z
ˉ
−
z
ω
ˉ
+
ω
z
z
ˉ
⇒
ω
−
ω
ˉ
=
(
ω
−
ω
ˉ
)
∣
z
∣
2
⇒
∣
z
∣
2
=
1
⇒
∣
z
∣
=
1