Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z∈ C satisfy the equation |z2|+2(.z+ barz.)-5=0 , then the complex number z+3+2i will lie on
Q. Let
z
∈
C
satisfy the equation
∣
∣
z
2
∣
∣
+
2
(
z
+
z
ˉ
)
−
5
=
0
, then the complex number
z
+
3
+
2
i
will lie on
4137
152
NTA Abhyas
NTA Abhyas 2022
Report Error
A
circle with center
1
−
2
i
and radius
3
B
circle with center
3
−
2
i
and radius
4
C
circle with center
1
+
2
i
and radius
3
D
circle with center
3
+
2
i
and radius
4
Solution:
∣
∣
z
2
∣
∣
+
2
(
z
+
z
ˉ
)
−
5
=
0
:
centre
=
(
−
2
,
0
)
radius
=
4
+
5
=
3
∴
z
=
−
2
+
3
e
i
θ
⇒
z
+
3
+
2
i
=
1
+
2
i
+
3
e
i
θ