Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $z\in C$ satisfy the equation $\left|z^{2}\right|+2\left(\right.z+\bar{z}\left.\right)-5=0$ , then the complex number $z+3+2i$ will lie on

NTA AbhyasNTA Abhyas 2022

Solution:

$\left|z^{2}\right|+2\left(\right.z+\bar{z}\left.\right)-5=0:$ centre $=\left(\right.-2,0\left.\right)$ radius $=\sqrt{4 + 5}=3$
$\therefore z=-2+3e^{i \theta }\Rightarrow z+3+2i=1+2i+3e^{i \theta }$