Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z = cos θ + i sin θ. Then, the value of displaystyle ∑ m=015 Im (z2m-1) at θ = 2° is
Q. Let
z
=
cos
θ
+
i
sin
θ
. Then, the value of
m
=
0
∑
15
I
m
(
z
2
m
−
1
)
at
θ
=
2
∘
is
3208
225
IIT JEE
IIT JEE 2009
Complex Numbers and Quadratic Equations
Report Error
A
s
i
n
2
∘
1
20%
B
3
s
i
n
2
∘
1
33%
C
2
s
i
n
2
∘
1
22%
D
4
s
i
n
2
∘
1
25%
Solution:
Given that,
z
=
cos
θ
+
i
sin
θ
=
e
i
θ
∴
m
=
1
∑
15
I
m
(
z
3
m
−
1
)
=
m
=
1
∑
15
I
m
(
e
i
θ
)
2
m
−
1
=
m
=
1
∑
15
I
m
e
i
(
2
m
−
1
)
θ
=
sin
θ
+
sin
3
θ
+
sin
5
θ
+
...
+
sin
29
θ
=
s
i
n
(
2
2
θ
)
s
i
n
(
2
θ
+
29
+
θ
s
i
n
(
2
15
×
2
θ
)
=
s
i
n
θ
s
i
n
(
15
θ
)
s
i
n
(
15
θ
)
=
4
s
i
n
2
∘
1