Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z be those complex numbers which satisfy |z+5| ≤ 4 and z(1+i)+ barz(1-i) ≥-10, i=√-1. If the maximum value of |z+1|2 is α+β √2, then the value of (α+β) is
Q. Let
z
be those complex numbers which satisfy
∣
z
+
5∣
≤
4
and
z
(
1
+
i
)
+
z
ˉ
(
1
−
i
)
≥
−
10
,
i
=
−
1
. If the maximum value of
∣
z
+
1
∣
2
is
α
+
β
2
, then the value of
(
α
+
β
)
is _____
2078
177
JEE Main
JEE Main 2021
Complex Numbers and Quadratic Equations
Report Error
Answer:
48
Solution:
∣
z
+
5∣
≤
4
(
x
+
5
)
2
+
y
2
≤
16
…
......
(
1
)
z
(
1
+
i
)
+
z
ˉ
(
1
−
i
)
≥
−
10
(
z
+
z
ˉ
)
+
i
(
z
−
z
ˉ
)
≥
−
10
x
−
y
+
5
≥
0
(
2
)
∣
z
+
1
∣
2
=
∣
z
−
(
−
1
)
∣
2
Let
P
(
−
1
,
0
)
∣
z
+
1
∣
M
a
x
.
2
=
P
B
2
(where
B
is in
3
rd
quadrant) for point of intersection
A
(
2
2
−
5
,
2
2
)
B
(
−
2
2
−
5
,
−
2
2
)
P
B
2
=
(
+
2
2
+
4
)
2
+
(
2
2
)
2
∣
z
+
1
∣
2
=
8
+
16
+
16
2
+
8
α
+
β
2
=
32
+
16
2
α
=
32
,
β
=
16
⇒
α
+
β
=
48