Q.
Let z be those complex numbers which satisfy ∣z+5∣≤4 and z(1+i)+zˉ(1−i)≥−10,i=−1. If the maximum value of ∣z+1∣2 is α+β2, then the value of (α+β) is _____
∣z+5∣≤4 (x+5)2+y2≤16…......(1) z(1+i)+zˉ(1−i)≥−10 (z+zˉ)+i(z−zˉ)≥−10 x−y+5≥0(2) ∣z+1∣2=∣z−(−1)∣2
Let P(−1,0) ∣z+1∣Max.2=PB2 (where B is in 3rd quadrant) for point of intersection A(22−5,22)B(−22−5,−22) PB2=(+22+4)2+(22)2 ∣z+1∣2=8+16+162+8 α+β2=32+162 α=32,β=16⇒α+β=48