Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z=a( cos (π/5)+i sin (π/5)), a ∈ R ,|a|<1, then S=z2015+z2016+z2017+ ldots equals
Q. Let
z
=
a
(
cos
5
π
+
i
sin
5
π
)
,
a
∈
R
,
∣
a
∣
<
1
, then
S
=
z
2015
+
z
2016
+
z
2017
+
…
equals
185
146
Complex Numbers and Quadratic Equations
Report Error
A
z
−
1
a
2015
B
1
−
z
a
2015
C
1
−
a
z
2015
D
a
−
1
z
2015
Solution:
Solution: We have
∣
z
∣
=
∣
a
∣
<
1
, thus
S
=
1
−
z
z
2015
But
z
2015
=
a
2015
[
cos
(
403
π
)
+
i
sin
(
403
π
)]
=
−
a
2015
∴
S
=
z
−
1
a
2015