Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z = ((√3/2) + (i/2))5 + ((√3/2) - (i/2))5 . If R(z) and I[z] respectively denote the real and imaginary parts of z, then :
Q. Let
z
=
(
2
3
+
2
i
)
5
+
(
2
3
−
2
i
)
5
. If
R
(
z
)
and
I
[
z
]
respectively denote the real and imaginary parts of
z
, then :
3401
217
JEE Main
JEE Main 2019
Complex Numbers and Quadratic Equations
Report Error
A
R
(
z
)
>
0
an
d
I
(
z
)
>
0
6%
B
R
(
z
)
<
0
an
d
I
(
z
)
>
0
24%
C
R
(
z
)
=
−
3
12%
D
I
(
z
)
=
0
59%
Solution:
z
=
(
2
3
+
i
)
5
+
(
2
3
−
i
)
5
z
=
(
e
iπ
/6
)
5
+
(
e
−
iπ
/6
)
5
=
e
i
5
π
/6
+
e
−
i
5
π
/6
=
cos
6
5
π
+
i
6
s
i
n
5
π
+
cos
(
6
−
5
π
)
+
i
sin
(
6
−
5
π
)
=
2
cos
6
5
π
<
0
I
(
z
)
=
0
an
d
R
e
(
z
)
<
0