Q.
Let z1,z2 be two complex numbers represented by points on the circle ∣z1∣=1 and ∣z2∣=2 respectively, then :
905
113
Complex Numbers and Quadratic Equations
Report Error
Solution:
∣2z1+z2∣≤2∣z1∣+∣z2∣=2×1+2=4 ∴ Maximum value of ∣2z1+z2∣=4 Clearly ∣z1−z2∣ is least when 0,z1,z2 are collinear. Then ∣z1−z2∣=1
Again ∣∣z2+z11∣∣≤∣z2∣+∣∣z11∣∣=2+∣z1∣1=2+11=3 ⇒∣∣z2+z11∣∣≤3