Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z 1, z 2 and z 3 are three complex numbers such that | z 1|=| z 2|=| z 3|=1 and (z12/z2 z3)+(z22/z3 z1)+(z32/z1 z2)+1=0 then find the sum of all possible values of |z1+z2+z3|.
Q. Let
z
1
,
z
2
and
z
3
are three complex numbers such that
∣
z
1
∣
=
∣
z
2
∣
=
∣
z
3
∣
=
1
and
z
2
z
3
z
1
2
+
z
3
z
1
z
2
2
+
z
1
z
2
z
3
2
+
1
=
0
then find the sum of all possible values of
∣
z
1
+
z
2
+
z
3
∣
.
1725
102
Complex Numbers and Quadratic Equations
Report Error
Answer:
3
Solution:
Θ
z
2
z
3
z
1
2
+
z
3
z
1
z
2
2
+
z
1
z
2
z
3
2
+
1
=
0
⇒
z
1
3
+
z
2
3
+
z
3
3
+
z
1
z
2
z
3
=
0
⇒
(
z
1
+
z
2
+
z
3
)
(
(
z
1
+
z
2
+
z
3
)
2
−
3
(
z
1
z
2
+
z
2
z
3
+
z
3
z
1
)
)
=
−
4
z
1
z
2
z
3
⇒
(
z
1
+
z
2
+
z
3
)
3
=
z
1
z
2
z
3
(
3
(
z
1
+
z
2
+
z
3
)
(
z
1
1
+
z
2
1
+
z
3
1
)
−
4
)
=
z
1
z
2
z
3
(
3
(
z
1
+
z
2
+
z
3
)
(
z
1
+
z
2
+
z
3
)
−
4
)
∴
∣
z
1
+
z
2
+
z
3
∣
2
=
∣
z
1
z
2
z
3
∣
∣3∣
z
1
+
z
2
+
z
3
∣
2
−
4
∣
Let
∣
z
1
+
z
2
+
z
3
∣=
x
∴
x
3
=
∣
∣
3
x
2
−
4
∣
∣
⇒
x
=
1
or
2
⇒
1
+
2
=
3