Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z =(1-i √3/2), i=√-1. Then the value of 21+(z+(1/z))3+(z2+(1/z2))3+(z3+(1/z3))3+ ldots+(z21+(1/z21))3 is
Q. Let
z
=
2
1
−
i
3
,
i
=
−
1
. Then the value of
21
+
(
z
+
z
1
)
3
+
(
z
2
+
z
2
1
)
3
+
(
z
3
+
z
3
1
)
3
+
…
+
(
z
21
+
z
21
1
)
3
is _____
4394
217
JEE Main
JEE Main 2021
Complex Numbers and Quadratic Equations
Report Error
Answer:
13
Solution:
Z
=
2
1
−
3
i
=
e
−
i
3
π
z
r
+
z
r
1
=
2
cos
(
−
3
π
)
r
=
2
cos
3
r
π
⇒
21
+
r
=
1
∑
21
(
z
r
+
z
r
1
)
3
=
8
(
cos
3
3
r
π
)
=
2
(
cos
r
π
+
3
cos
3
r
π
)
⇒
21
+
(
z
+
2
1
)
3
+
(
z
2
+
z
2
1
)
3
+
……
(
z
21
+
z
21
1
)
3
=
21
+
r
=
1
∑
21
(
z
r
+
z
r
1
)
3
=
21
+
r
=
1
∑
21
(
2
cos
r
π
+
6
cos
3
r
π
)
=
21
−
2
−
6
=
13